Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.313
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542369

RESUMO

Arrestins are known to be involved not only in the desensitization and internalization of G protein-coupled receptors but also in the G protein-independent activation of mitogen-activated protein (MAP) kinases, such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), to regulate cell proliferation and inflammation. Our previous study revealed that the histamine H1 receptor-mediated activation of ERK is dually regulated by Gq proteins and arrestins. In this study, we investigated the roles of Gq proteins and arrestins in the H1 receptor-mediated activation of JNK in Chinese hamster ovary (CHO) cells expressing wild-type (WT) human H1 receptors, the Gq protein-biased mutant S487TR, and the arrestin-biased mutant S487A. In these mutants, the Ser487 residue in the C-terminus region of the WT was truncated (S487TR) or mutated to alanine (S487A). Histamine significantly stimulated JNK phosphorylation in CHO cells expressing WT and S487TR but not S487A. Histamine-induced JNK phosphorylation in CHO cells expressing WT and S487TR was suppressed by inhibitors against H1 receptors (ketotifen and diphenhydramine), Gq proteins (YM-254890), and protein kinase C (PKC) (GF109203X) as well as an intracellular Ca2+ chelator (BAPTA-AM) but not by inhibitors against G protein-coupled receptor kinases (GRK2/3) (cmpd101), ß-arrestin2 (ß-arrestin2 siRNA), and clathrin (hypertonic sucrose). These results suggest that the H1 receptor-mediated phosphorylation of JNK is regulated by Gq-protein/Ca2+/PKC-dependent but GRK/arrestin/clathrin-independent pathways.


Assuntos
Arrestina , Histamina , Animais , Cricetinae , Humanos , Arrestina/metabolismo , Arrestinas/metabolismo , beta-Arrestinas/metabolismo , Células CHO , Clatrina/metabolismo , Cricetulus , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Histamina/farmacologia , Histamina/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Transdução de Sinais
2.
Invest Ophthalmol Vis Sci ; 65(3): 32, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38517428

RESUMO

Purpose: Variants in the ARR3 gene have been linked to early-onset high myopia (eoHM) with a unique X-linked female-limited inheritance. However, the clinical validity of this gene-disease association has not been systematically evaluated. Methods: We identified two Chinese families with novel ARR3 splicing variants associated with eoHM. Minigene constructs were generated to assess the effects of the variants on splicing. We integrated previous evidence to curate the clinical validity of ARR3 and eoHM using the ClinGen framework. Results: The variants c.39+1G>A and c.100+4A>G were identified in the two families. Minigene analysis showed both variants resulted in abnormal splicing and introduction of premature termination codons. Based on genetic and experimental evidence, the ARR3-eoHM relationship was classified as "definitive." Conclusions: Our study identified two novel splicing variants of the ARR3 gene linked to eoHM and confirmed their functional validity via minigene assay. This research expanded the mutational spectrum of ARR3 and confirmed the minigene assay technique as an effective tool for understanding variant effects on splicing mechanisms.


Assuntos
Arrestinas , Miopia , Splicing de RNA , Feminino , Humanos , Mutação , Miopia/genética , Splicing de RNA/genética , Arrestinas/genética , População do Leste Asiático/genética
3.
Biochem Pharmacol ; 222: 116119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461904

RESUMO

The glucagon-like peptide 1 receptor (GLP-1R) is a validated clinical target for the treatment of type 2 diabetes and obesity. Unlike most G protein-coupled receptors (GPCRs), the GLP-1R undergoes an atypical mode of internalisation that does not require ß-arrestins. While differences in GLP-1R trafficking and ß-arrestin recruitment have been observed between clinically used GLP-1R agonists, the role of G protein-coupled receptor kinases (GRKs) in affecting these pathways has not been comprehensively assessed. In this study, we quantified the contribution of GRKs to agonist-mediated GLP-1R internalisation and ß-arrestin recruitment profiles using cells where endogenous ß-arrestins, or non-visual GRKs were knocked out using CRISPR/Cas9 genome editing. Our results confirm the previously established atypical ß-arrestin-independent mode of GLP-1R internalisation and revealed that GLP-1R internalisation is dependent on the expression of GRKs. Interestingly, agonist-mediated GLP-1R ß-arrestin 1 and ß-arrestin 2 recruitment were differentially affected by endogenous GRK knockout with ß-arrestin 1 recruitment more sensitive to GRK knockout than ß-arrestin 2 recruitment. Moreover, individual overexpression of GRK2, GRK3, GRK5 or GRK6 in a newly generated GRK2/3/4/5/6 HEK293 cells, rescued agonist-mediated ß-arrestin 1 recruitment and internalisation profiles to similar levels, suggesting that there is no specific GRK isoform that drives these pathways. This study advances mechanistic understanding of agonist-mediated GLP-1R internalisation and provides novel insights into how GRKs may fine-tune GLP-1R signalling.


Assuntos
Diabetes Mellitus Tipo 2 , Quinases de Receptores Acoplados a Proteína G , Humanos , Arrestinas/genética , Arrestinas/metabolismo , beta-Arrestina 1/metabolismo , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo , beta-Arrestinas/metabolismo , Quinases de Receptores Acoplados a Proteína G/genética , Quinases de Receptores Acoplados a Proteína G/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células HEK293 , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo
4.
Am J Physiol Cell Physiol ; 326(3): C768-C783, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314723

RESUMO

Arrestin domain containing 2 and 3 (Arrdc2/3) are genes whose mRNA contents are decreased in young skeletal muscle following mechanical overload. Arrdc3 is linked to the regulation of signaling pathways in nonmuscle cells that could influence skeletal muscle size. Despite a similar amino acid sequence, Arrdc2 function remains undefined. The purpose of this study was to further explore the relationship of Arrdc2/Arrdc3 expression with changes in mechanical load in young and aged muscle and define the effect of Arrdc2/3 expression on C2C12 myotube diameter. In young and aged mice, mechanical load was decreased using hindlimb suspension whereas mechanical load was increased by reloading previously unloaded muscle or inducing high-force contractions. Arrdc2 and Arrdc3 mRNAs were overexpressed in C2C12 myotubes using adenoviruses. Myotube diameter was determined 48-h posttransfection, and RNA sequencing was performed on those samples. Arrdc2 and Arrdc3 mRNA content was higher in the unloaded muscle within 1 day of disuse and remained higher up through 10 days. The induction of Arrdc2 mRNA was more pronounced in aged muscle than young muscle in response to unloading. Reloading previously unloaded muscle of young and aged mice restored Arrdc2 and Arrdc3 levels to ambulatory levels. Increasing mechanical load beyond normal ambulatory levels lowered Arrdc2 mRNA, but not Arrdc3 mRNA, in young and aged muscle. Arrdc2 overexpression only was sufficient to lower myotube diameter in C2C12 cells in part by altering the transcriptome favoring muscle atrophy. These data are consistent with Arrdc2 contributing to disuse atrophy, particularly in aged muscle.NEW & NOTEWORTHY We establish Arrdc2 as a novel mechanosensitive gene highly induced in response to mechanical unloading, particularly in aged muscle. Arrdc2 induction in C2C12 myotubes is sufficient to produce thinner myotubes and a transcriptional landscape consistent with muscle atrophy and disuse.


Assuntos
Fibras Musculares Esqueléticas , Transtornos Musculares Atróficos , Animais , Camundongos , Músculo Esquelético , Atrofia Muscular/genética , Envelhecimento/genética , RNA Mensageiro/genética , Arrestinas
5.
Cell Cycle ; 23(1): 56-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38389126

RESUMO

AXL plays crucial roles in the tumorigenesis, progression, and drug resistance of neoplasms; however, the mechanisms associated with AXL overexpression in tumors remain largely unknown. In this study, to investigate these molecular mechanisms, wildtype and mutant proteins of arrestin domain-containing protein 3 (ARRDC3) and AXL were expressed, and co-immunoprecipitation analyses were performed. ARRDC3-deficient cells generated using the CRISPR-Cas9 system were treated with different concentrations of the tyrosine kinase inhibitor sunitinib and subjected to cell biological, molecular, and pharmacological experiments. Furthermore, immunohistochemistry was used to analyze the correlation between ARRDC3 and AXL protein expressions in renal cancer tissue specimens. The experimental results demonstrated that ARRDC3 interacts with AXL to promote AXL ubiquitination and degradation, followed by the negative regulation of downstream signaling mechanisms, including the phosphorylation of protein kinase B and extracellular signal-regulated kinase. Notably, ARRDC3 deficiency decreased the sunitinib sensitivity of clear cell renal cell carcinoma (ccRCC) cells in a manner dependent on the regulation of AXL stability. Overall, our results suggest that ARRDC3 is a negative regulator of AXL and can serve as a novel predictor of sunitinib therapeutic response in patients with ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Arrestinas/metabolismo , Arrestinas/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico
6.
Pharmacol Rev ; 76(2): 267-299, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351071

RESUMO

Type 2 diabetes (T2D) mellitus has emerged as a major global health concern that has accelerated in recent years due to poor diet and lifestyle. Afflicted individuals have high blood glucose levels that stem from the inability of the pancreas to make enough insulin to meet demand. Although medication can help to maintain normal blood glucose levels in individuals with chronic disease, many of these medicines are outdated, have severe side effects, and often become less efficacious over time, necessitating the need for insulin therapy. G protein-coupled receptors (GPCRs) regulate many physiologic processes, including blood glucose levels. In pancreatic ß cells, GPCRs regulate ß-cell growth, apoptosis, and insulin secretion, which are all critical in maintaining sufficient ß-cell mass and insulin output to ensure euglycemia. In recent years, new insights into the signaling of incretin receptors and other GPCRs have underscored the potential of these receptors as desirable targets in the treatment of diabetes. The signaling of these receptors is modulated by GPCR kinases (GRKs) that phosphorylate agonist-activated GPCRs, marking the receptor for arrestin binding and internalization. Interestingly, genome-wide association studies using diabetic patient cohorts link the GRKs and arrestins with T2D. Moreover, recent reports show that GRKs and arrestins expressed in the ß cell serve a critical role in the regulation of ß-cell function, including ß-cell growth and insulin secretion in both GPCR-dependent and -independent pathways. In this review, we describe recent insights into GPCR signaling and the importance of GRK function in modulating ß-cell physiology. SIGNIFICANCE STATEMENT: Pancreatic ß cells contain a diverse array of G protein-coupled receptors (GPCRs) that have been shown to improve ß-cell function and survival, yet only a handful have been successfully targeted in the treatment of diabetes. This review discusses recent advances in our understanding of ß-cell GPCR pharmacology and regulation by GPCR kinases while also highlighting the necessity of investigating islet-enriched GPCRs that have largely been unexplored to unveil novel treatment strategies.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Insulinas , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glicemia/metabolismo , Estudo de Associação Genômica Ampla , Células Secretoras de Insulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Arrestinas/metabolismo , Insulinas/metabolismo , Fosforilação
7.
Elife ; 122024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270169

RESUMO

The α-arrestins form a large family of evolutionally conserved modulators that control diverse signaling pathways, including both G-protein-coupled receptor (GPCR)-mediated and non-GPCR-mediated pathways, across eukaryotes. However, unlike ß-arrestins, only a few α-arrestin targets and functions have been characterized. Here, using affinity purification and mass spectrometry, we constructed interactomes for 6 human and 12 Drosophila α-arrestins. The resulting high-confidence interactomes comprised 307 and 467 prey proteins in human and Drosophila, respectively. A comparative analysis of these interactomes predicted not only conserved binding partners, such as motor proteins, proteases, ubiquitin ligases, RNA splicing factors, and GTPase-activating proteins, but also those specific to mammals, such as histone modifiers and the subunits of V-type ATPase. Given the manifestation of the interaction between the human α-arrestin, TXNIP, and the histone-modifying enzymes, including HDAC2, we undertook a global analysis of transcription signals and chromatin structures that were affected by TXNIP knockdown. We found that TXNIP activated targets by blocking HDAC2 recruitment to targets, a result that was validated by chromatin immunoprecipitation assays. Additionally, the interactome for an uncharacterized human α-arrestin ARRDC5 uncovered multiple components in the V-type ATPase, which plays a key role in bone resorption by osteoclasts. Our study presents conserved and species-specific protein-protein interaction maps for α-arrestins, which provide a valuable resource for interrogating their cellular functions for both basic and clinical research.


Assuntos
Arrestina , ATPases Vacuolares Próton-Translocadoras , Animais , Humanos , Histonas , Drosophila , Arrestinas , Mamíferos
8.
Mol Cell Endocrinol ; 581: 112107, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37981188

RESUMO

Compartmentalization of GPCR signaling is an emerging topic that highlights the physiological relevance of spatial bias in signaling. The parathyroid hormone (PTH) type 1 receptor (PTH1R) was the first GPCR described to signal via heterotrimeric G-protein and cAMP from endosomes after ß-arrestin mediated internalization, challenging the canonical GPCR signaling model which established that signaling is terminated by receptor internalization. More than a decade later, many other GPCRs have been shown to signal from endosomes via cAMP, and recent studies have proposed that location of cAMP generation impacts physiological outcomes of GPCR signaling. Here, we review the extensive literature regarding PTH1R endosomal signaling via cAMP, the mechanisms that regulate endosomal generation of cAMP, and the implications of spatial bias in PTH1R physiological functions.


Assuntos
Arrestinas , Receptor Tipo 1 de Hormônio Paratireóideo , Arrestinas/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Transdução de Sinais/fisiologia , Hormônio Paratireóideo/metabolismo , Biologia
9.
Hypertension ; 81(1): 6-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37449411

RESUMO

ß-arrestins are a family of intracellular signaling proteins that play a key role in regulating the activity of G protein-coupled receptors. The angiotensin-II type 1 receptor is an important G protein-coupled receptor involved in the regulation of cardiovascular function and has been implicated in the progression of cardiovascular diseases. In addition to canonical G protein signaling, G protein-coupled receptors including the angiotensin-II type 1 receptor can signal via ß-arrestin. Dysregulation of ß-arrestin signaling has been linked to several cardiovascular diseases including hypertension, atherosclerosis, and heart failure. Understanding the role of ß-arrestins in these conditions is critical to provide new therapeutic targets for the treatment of cardiovascular disease. In this review, we will discuss the beneficial and maladaptive physiological outcomes of angiotensin-II type 1 receptor-dependent ß-arrestin activation in different cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Humanos , beta-Arrestinas , Arrestinas/metabolismo , Transdução de Sinais , Receptor Tipo 1 de Angiotensina/metabolismo , Angiotensinas/metabolismo , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo , beta-Arrestina 1/metabolismo , Angiotensina II/metabolismo
10.
Cell Death Differ ; 31(2): 150-158, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38097622

RESUMO

Whole-genome screens using CRISPR technologies are powerful tools to identify novel tumour suppressors as well as factors that impact responses of malignant cells to anti-cancer agents. Applying this methodology to lymphoma cells, we conducted a genome-wide screen to identify novel inhibitors of tumour expansion that are induced by the tumour suppressor TRP53. We discovered that the absence of Arrestin domain containing 3 (ARRDC3) increases the survival and long-term competitiveness of MYC-driven lymphoma cells when treated with anti-cancer agents that activate TRP53. Deleting Arrdc3 in mice caused perinatal lethality due to various developmental abnormalities, including cardiac defects. Notably, the absence of ARRDC3 markedly accelerated MYC-driven lymphoma development. Thus, ARRDC3 is a new mediator of TRP53-mediated suppression of tumour expansion, and this discovery may open new avenues to harness this process for cancer therapy.


Assuntos
Linfoma , Neoplasias , Animais , Camundongos , Arrestinas/genética , Arrestinas/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Neoplasias/genética
11.
Oncol Rep ; 51(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38099418

RESUMO

C­X­C motif chemokine 12 (CXCL12) promotes metastasis of several tumors by affecting cell migration and invasion via its receptors, C­X­C chemokine receptor type (CXCR)4 and CXCR7. Current therapeutic approaches focus on the selective inactivation of either CXCR4 or CXCR7 in patients with cancer. Alternative strategies may emerge from the analysis of downstream events that mediate the migratory effects of CXCL12 in cancer cells. While CXCR4 activates cell signaling through both G proteins and arrestins, CXCR7 is believed to preferentially signal through arrestins. The present study analyzed the CXCL12­dependent chemotaxis of A549, C33A, DLD­1, MDA­MB­231 and PC­3 cells, in which either the activity of G proteins, EGFR or Src kinase was inhibited pharmacologically or the expression of arrestins was inhibited by RNA interference. The results demonstrated that CXCL12­induced migration of A549, C33A, DLD­1, MDA­MB­231 and PC­3 cells was attenuated by the Gαi/o­inhibitor pertussis toxin (PTX), but was unaffected by small interfering RNA­mediated gene silencing of ß­arrestin1/2. In particular, the sensitivity of DLD­1 migration to PTX was unexpected, as it is solely dependent on the non­classical chemokine receptor, CXCR7. Furthermore, chemotactic responses to CXCL12 were additionally prevented by inhibiting EGFR activity via AG1478 and Src kinase activity via Src inhibitor­1. In conclusion, the results of the present study suggest that G protein­ and Src­dependent transactivation of EGFR is a common mechanism through which CXCL12­bound CXCR4 and/or CXCR7 control cancer cell migration and metastasis. These findings highlight EGFR as a potential therapeutic target that interferes with CXCL12­induced cancer expansion.


Assuntos
Neoplasias , Receptores CXCR , Humanos , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Ativação Transcricional , Receptores CXCR/genética , Receptores CXCR/metabolismo , Transdução de Sinais , Proteínas de Ligação ao GTP , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Movimento Celular , Arrestinas/genética , Arrestinas/metabolismo , Arrestinas/farmacologia , Quinases da Família src/genética , Quinases da Família src/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo
12.
Biochem Pharmacol ; 220: 116013, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151077

RESUMO

GPR101 is an orphan G protein-coupled receptor that promotes growth hormone secretion in the pituitary. The microduplication of the GPR101 gene has been linked with the X-linked acrogigantism, or X-LAG, syndrome. This disease is characterized by excessive growth hormone secretion and abnormal rapid growth beginning early in life. Mechanistically, GPR101 induces growth hormone secretion through constitutive activation of multiple heterotrimeric G proteins. However, the full scope of GPR101 signaling remains largely elusive. Herein, we investigated the association of GPR101 to multiple transducers and uncovered an important basal interaction with Arrestin 2 (ß-arrestin 1) and Arrestin 3 (ß-arrestin 2). By using a GPR101 mutant lacking the C-terminus and cell lines with an Arrestin 2/3 null background, we show that the arrestin association leads to constitutive clathrin- and dynamin-mediated GPR101 internalization. To further highlight GPR101 intracellular fate, we assessed the colocalization of GPR101 with Rab protein markers. Internalized GPR101 was mainly colocalized with the early endosome markers, Rab5 and EEA-1, and to a lesser degree with the late endosome marker Rab7. However, GPR101 was not colocalized with the recycling endosome marker Rab11. These findings show that the basal arrestin recruitment by GPR101 C-terminal tail drives the receptor constitutive clathrin-mediated internalization. Intracellularly, GPR101 concentrates in the endosomal compartment and is degraded through the lysosomal pathway. In conclusion, we uncovered a constitutive intracellular trafficking of GPR101 that potentially represents an important layer of regulation of its signaling and function.


Assuntos
Arrestinas , Receptores Acoplados a Proteínas G , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Arrestinas/genética , Arrestinas/metabolismo , beta-Arrestina 2/metabolismo , Hormônio do Crescimento , Clatrina/metabolismo , Endocitose
13.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119584, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714305

RESUMO

G protein-coupled receptors (GPCRs) are seven transmembrane receptors that respond to external stimuli and undergo conformational changes to activate G proteins and modulate cellular processes leading to biological outcomes. To prevent overstimulation and prolonged exposure to stimuli, GPCRs are regulated by internalization. While the canonical GPCR internalization mechanism in mammalian cells is arrestin-dependent, clathrin-mediated endocytosis, more diverse GPCR internalization mechanisms have been described over the years. However, there is a lack of consistent methods used in the literature making it complicated to determine a receptor's internalization pathway. Here, we utilized a highly efficient time-resolved Förster resonance energy transfer (TR-FRET) internalization assay to determine the internalization profile of nine distinct GPCRs representing the GPCR classes A, B and C and with different G protein coupling profiles. This technique, coupled with clustered regularly interspaced palindromic repeats (CRISPR) engineered knockout cells allows us to effectively study the involvement of heterotrimeric G proteins and non-visual arrestins. We found that all the nine receptors internalized upon agonist stimulation in a concentration-dependent manner and six receptors showed basal internalization. Yet, there is no correlation between the receptor class and primary G protein coupling to the arrestin and G protein dependence for GPCR internalization. Overall, this study presents a platform for studying internalization that is applicable to most GPCRs and may even be extended to other membrane proteins. This method can be easily applicable to other endocytic machinery of interest and ultimately will lend itself towards the construction of comprehensive receptor internalization profiles.


Assuntos
Arrestina , Arrestinas , Animais , Arrestinas/metabolismo , Arrestina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/metabolismo , Mamíferos/metabolismo
14.
Pflugers Arch ; 475(12): 1387-1407, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38036775

RESUMO

Animal opsins are light activated G-protein-coupled receptors, capable of optogenetic control of G-protein signalling for research or therapeutic applications. Animal opsins offer excellent photosensitivity, but their temporal resolution can be limited by long photoresponse duration when expressed outside their native cellular environment. Here, we explore methods for addressing this limitation for a prototypical animal opsin (human rod opsin) in HEK293T cells. We find that the application of the canonical rhodopsin kinase (GRK1)/visual arrestin signal termination mechanism to this problem is complicated by a generalised suppressive effect of GRK1 expression. This attenuation can be overcome using phosphorylation-independent mutants of arrestin, especially when these are tethered to the opsin protein. We further show that point mutations targeting the Schiff base stability of the opsin can also reduce signalling lifetime. Finally, we apply one such mutation (E122Q) to improve the temporal fidelity of restored visual responses following ectopic opsin expression in the inner retina of a mouse model of retinal degeneration (rd1). Our results reveal that these two strategies (targeting either arrestin binding or Schiff-base hydrolysis) can produce more time-delimited opsin signalling under heterologous expression and establish the potential of this approach to improve optogenetic performance.


Assuntos
Opsinas , Opsinas de Bastonetes , Animais , Camundongos , Humanos , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo , Opsinas/genética , Opsinas/metabolismo , Optogenética/métodos , Células HEK293 , Arrestinas/genética , Arrestinas/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(43): e2303794120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844230

RESUMO

ß-arrestins are multivalent adaptor proteins that bind active phosphorylated G protein-coupled receptors (GPCRs) to inhibit G protein signaling, mediate receptor internalization, and initiate alternative signaling events. ß-arrestins link agonist-stimulated GPCRs to downstream signaling partners, such as the c-Raf-MEK1-ERK1/2 cascade leading to ERK1/2 activation. ß-arrestins have been thought to transduce signals solely via passive scaffolding by facilitating the assembly of multiprotein signaling complexes. Recently, however, ß-arrestin 1 and 2 were shown to activate two downstream signaling effectors, c-Src and c-Raf, allosterically. Over the last two decades, ERK1/2 have been the most intensely studied signaling proteins scaffolded by ß-arrestins. Here, we demonstrate that ß-arrestins play an active role in allosterically modulating ERK kinase activity in vitro and within intact cells. Specifically, we show that ß-arrestins and their GPCR-mediated active states allosterically enhance ERK2 autophosphorylation and phosphorylation of a downstream ERK2 substrate, and we elucidate the mechanism by which ß-arrestins do so. Furthermore, we find that allosteric stimulation of dually phosphorylated ERK2 by active-state ß-arrestin 2 is more robust than by active-state ß-arrestin 1, highlighting differential capacities of ß-arrestin isoforms to regulate effector signaling pathways downstream of GPCRs. In summary, our study provides strong evidence for a new paradigm in which ß-arrestins function as active "catalytic" scaffolds to allosterically unlock the enzymatic activity of signaling components downstream of GPCR activation.


Assuntos
Arrestinas , Transdução de Sinais , beta-Arrestinas/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Arrestinas/metabolismo , Regulação Alostérica , Transdução de Sinais/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Fosforilação , beta-Arrestina 2/metabolismo
16.
Biomolecules ; 13(10)2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37892234

RESUMO

The D2 dopamine receptor (D2R) signals through both G proteins and ß-arrestins to regulate important physiological processes, such as movement, reward circuitry, emotion, and cognition. ß-arrestins are believed to interact with G protein-coupled receptors (GPCRs) at the phosphorylated C-terminal tail or intracellular loops. GPCR kinases (GRKs) are the primary drivers of GPCR phosphorylation, and for many receptors, receptor phosphorylation is indispensable for ß-arrestin recruitment. However, GRK-mediated receptor phosphorylation is not required for ß-arrestin recruitment to the D2R, and the role of GRKs in D2R-ß-arrestin interactions remains largely unexplored. In this study, we used GRK knockout cells engineered using CRISPR-Cas9 technology to determine the extent to which ß-arrestin recruitment to the D2R is GRK-dependent. Genetic elimination of all GRK expression decreased, but did not eliminate, agonist-stimulated ß-arrestin recruitment to the D2R or its subsequent internalization. However, these processes were rescued upon the re-introduction of various GRK isoforms in the cells with GRK2/3 also enhancing dopamine potency. Further, treatment with compound 101, a pharmacological inhibitor of GRK2/3 isoforms, decreased ß-arrestin recruitment and receptor internalization, highlighting the importance of this GRK subfamily for D2R-ß-arrestin interactions. These results were recapitulated using a phosphorylation-deficient D2R mutant, emphasizing that GRKs can enhance ß-arrestin recruitment and activation independently of receptor phosphorylation.


Assuntos
Quinases de Receptores Acoplados a Proteína G , Receptores Dopaminérgicos , Arrestinas/metabolismo , beta-Arrestinas/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Fosforilação , Isoformas de Proteínas/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Células HEK293
17.
Elife ; 122023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37855711

RESUMO

The vasopressin type 2 receptor (V2R) is an essential G protein-coupled receptor (GPCR) in renal regulation of water homeostasis. Upon stimulation, the V2R activates Gαs and Gαq/11, which is followed by robust recruitment of ß-arrestins and receptor internalization into endosomes. Unlike canonical GPCR signaling, the ß-arrestin association with the V2R does not terminate Gαs activation, and thus, Gαs-mediated signaling is sustained while the receptor is internalized. Here, we demonstrate that this V2R ability to co-interact with G protein/ß-arrestin and promote endosomal G protein signaling is not restricted to Gαs, but also involves Gαq/11. Furthermore, our data imply that ß-arrestins potentiate Gαs/Gαq/11 activation at endosomes rather than terminating their signaling. Surprisingly, we found that the V2R internalizes and promote endosomal G protein activation independent of ß-arrestins to a minor degree. These new observations challenge the current model of endosomal GPCR signaling and suggest that this event can occur in both ß-arrestin-dependent and -independent manners.


Assuntos
Arrestinas , Receptores de Vasopressinas , beta-Arrestinas/metabolismo , Arrestinas/metabolismo , beta-Arrestina 1/metabolismo , Endossomos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Vasopressinas/metabolismo
18.
Curr Protoc ; 3(10): e890, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37787634

RESUMO

G protein-coupled receptors (GPCRs) represent ∼30% of current drug targets. Ligand binding to these receptors activates G proteins and arrestins, which function in different signaling pathways. Given that functionally selective or biased ligands preferentially activate one of these two groups of pathways, they may be superior medications for certain disease states. The identification of such ligands requires robust drug screening assays for both G protein and arrestin activity. This unit describes protocols for assays that monitor reversible arrestin recruitment to GPCRs in living cells using either bioluminescence resonance energy transfer (BRET) or nanoluciferase complementation (NanoLuc). Two types of assays can be used: one configuration directly measures arrestin recruitment to a GPCR fused to a protein tag at its intracellular C-terminus, whereas the other configuration detects arrestin translocation to the plasma membrane in response to activation of an unmodified GPCR. Together, these assays are powerful tools for studying dynamic interactions between GPCRs and arrestins. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Receptor-arrestin BRET assay to measure ligand-induced recruitment of arrestin to receptors Basic Protocol 2: Receptor-arrestin NANOBIT assay to measure ligand-induced recruitment of arrestin to receptors Alternative Protocol 1: BRET assay to measure ligand-induced recruitment of arrestin to the plasma membrane Alternative Protocol 2: NANOBIT assay to measure ligand-induced recruitment of arrestin to the plasma membrane Support Protocol 1: Optimization of polyethylenimine (PEI) concentration for transfection.


Assuntos
Arrestina , Arrestinas , Ligantes , Projetos de Pesquisa , Membrana Celular
19.
Mol Biol Rep ; 50(12): 10399-10407, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37843713

RESUMO

Β-arrestins are intracellular scaffolding proteins that have multifaceted roles in different types of disorders. In this review article, we gave a summary about the discovery, characterization and classification of these proteins and their intracellular functions. Moreover, this review article focused on the hepatic expression of ß-arrestins and their hepatocellular distribution and function in each liver cell type. Also, we showed that ß-arrestins are key regulators of distinct types of hepatic disorders. On the other hand, we addressed some important points that have never been studied before regarding the role of ß-arrestins in certain types of hepatic disorders which needs more research efforts to cover.


Assuntos
Arrestinas , Hepatopatias , Humanos , beta-Arrestinas/metabolismo , Arrestinas/metabolismo , Transdução de Sinais , Proteínas/metabolismo
20.
Curr Protoc ; 3(9): e832, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37671938

RESUMO

Purified arrestin proteins are necessary for biochemical, biophysical, and structural studies of these versatile regulators of cell signaling. Described herein is a basic protocol for arrestin expression in Escherichia coli and purification of tag-free wild-type and mutant arrestins. The method includes ammonium sulfate precipitation of arrestins from cell lysates, followed by Heparin-Sepharose chromatography. Depending on the arrestin type and/or mutations, the next step is Q-Sepharose or SP-Sepharose chromatography. In many cases, the nonbinding column is used as a filter to bind contaminants without retaining arrestin. In some cases, both chromatographic steps must be performed sequentially to achieve high purity. Purified arrestins can be concentrated up to 10 mg/ml, remain fully functional, and withstand several cycles of freezing and thawing, provided that the overall salt concentration is maintained at or above physiological levels. © 2023 Wiley Periodicals LLC. Basic Protocol: Large-scale expression and purification of arrestins Alternate Protocol: Purification of arrestin-3 and truncated form of arrestin-1-(1-378) Support Protocol: Small-scale test expression of wild-type and mutant arrestins in E. coli.


Assuntos
Arrestina , Escherichia coli , Arrestinas , Sulfato de Amônio , Biofísica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...